Spatial Distribution of Oxygen Chemical Potential under Potential Gradients and Theoretical Maximum Power Density with 8YSZ Electrolyte
نویسندگان
چکیده
The maximum power density of SOFC with 8YSZ electrolyte as the function of thickness was calculated by integrating partial conductivities of charge carriers under various DC bias conditions at a fixed oxygen chemical potential gradient at both sides of the electrolyte. The partial conductivities were successfully taken using the Hebb-Wagner polarization method as a function of temperature and oxygen partial pressure, and the spatial distribution of oxygen partial pressure across the electrolyte was calculated based on Choudhury and Patterson's model by considering zero electrode polarization. At positive voltage conditions corresponding to SOFC and SOEC, the high conductivity region was expanded, but at negative cell voltage condition, the low conductivity region near n-type to p-type transition was expanded. In addition, the maximum power density calculated from the current-voltage characteristic showed approximately 5.76 W/cm(2) at 700 (o)C with 10 μm thick-8YSZ, while the oxygen partial pressure of the cathode and anode sides maintained ≈0.21 and 10(-22) atm.
منابع مشابه
A Numerical Simulation Model of Solid Acid Fuel Cell Performance by CsH2PO4 Electrolyte
The performance of the solid acid fuel cell by CsH2PO4 electrolyte was analyzed using the present model of the electrochemical reaction and transport phenomena, which are fully coupled with the governing equations. Development of such a model requires creating the three-dimensional geometry and its mesh grid, discretization of momentum, mass and electric charge balance equation and solving the ...
متن کاملYttria and Ceria Doped Zirconia Thin Films Grown by Pulsed Laser Deposition
The Yttria stabilized Zirconia (YSZ) is a standard electrolyte for solid oxide fuel cells (SOFCs), which are potential candidates for next generation portable and mobile power sources. YSZ electrolyte thin films having a cubic single phase allow reducing the SOFC operating temperature without diminishing the electrochemical power density. Films of 8 mol% Yttria stabilized Zirconia (8YSZ) and fi...
متن کاملEffect of Electrolyte Conductivity and Aeration on Performance of Sediment Microbial Fuel Cell
Sediment microbial fuel cells (SMFCs) are a promising technology for a viable source of energy. This technology is faced with many challenges, such as limited mass transfer and low electricity generation. The aim of this research was to investigate the effect of electrolyte conductivity and aeration effect on power generation from SMFCs. Electrical conductivity was adjusted at 6different levels...
متن کاملComputational Study of Chemical Properties of Xylometazoline and the Connected form to Fullerene (C60) as a Medicine Nano Carrier
In this research at the first, xylometazoline hydrochloride drug (XY) and its fullerene connected form (FXY) were optimized. Natural Bond Orbital (NBO) calculations for these compounds were carried out at the B3LYP/6-31G* quantum chemistry level, in the gas phase and the liquid phase. These calculations can be performed at different accuracy levels depending on the aim of the theoretical study....
متن کاملComputational Study of Chemical Properties of Xylometazoline and the Connected form to Fullerene (C60) as a Medicine Nano Carrier
In this research at the first, xylometazoline hydrochloride drug (XY) and its fullerene connected form (FXY) were optimized. Natural Bond Orbital (NBO) calculations for these compounds were carried out at the B3LYP/6-31G* quantum chemistry level, in the gas phase and the liquid phase. These calculations can be performed at different accuracy levels depending on the aim of the theoretical study....
متن کامل